Sabtu, 16 Juni 2012

X-Ray Diffraction part 3


BAGIAN DAN PRINSIP KERJA
X-RAY DIFFRACTOMETER

X-Ray Diffraction (XRD) merupakan teknik analisis non-destruktif untuk mengeidentifikasi dan menentukan secara kuantitatif tentang bentuk berbagai kristal, yang disebut fase. Identifikasi diperoleh dengan membandingkan pola difaksi dengan sinar-X. XRD dapat digunakan untuk menentukan fase apa yang ada dalam bahan dan konsentasi bahan-bahan penyusunnya. XRD juga dapat membedakan antara material yang bersifat kristal dan amorf. Selain itu, XRD juga dapat mengukur macam-macam keacakan dan penyimpangan kristal serta karakterisasi material kristal. XRD juga dapat mengidentifikasi mineral-mineral yang berbutir halus seperti tanah liat.
Sinar-X dipilih karena merupakan radiasi elektromagnetik yang memiliki energi tinggi sekitar 200 eV sampai 1 MeV. Sinar X dihasilkan oleh interaksi antara berkas elektron eksternal dengan elektron pada kulit atom. Spektrum Sinar X memilki panjang gelombang 10-5 – 10 nm, berfrekuensi 1017 -1020 Hz dan memiliki energi 103 -106 eV. Panjang gelombang sinar X memiliki orde yang sama dengan jarak antar atom sehingga dapat digunakan sebagai sumber difraksi kristal.
XRD (X-Ray Diffractometer) yang terdapat di Laboratorium Sentral FMIPA UM adalah jenis XRD Philips tipe X’Pert PRO dengan penampakan seperti gambar berikut.
 









A.    Bagian-bagian XRD
Untuk mendapatkan gambaran yang lebih jelas tentang bagian-bagian XRD, berikut disajikan gambar bagian dalam XRD merk Philips terlihat dari atas.
 

















XRD terdiri dari tiga bagian utama, yaitu tabung sinar-X (sumber monokromatis), tempat obyek yang diteliti (chamber), dan detektor sinar-X. Sinar-X dihasilkan oleh tabung sinar-X yang berisi katoda. Dengan memanaskan filamen di dalamnya akan dihasilkan elektron yang gerakannya dipercepat dengan memberikan beda potensial antara katoda dan anoda. Sinar-X yang dihasilkan akan bergerak dan menembaki obyek yang berada dalam chamber. Ketika menabrak elektron dalam obyek, dihasilkan pancaran sinar-X. Obyek dan detektor berputar untuk menangkap dan merekam intensitas dari pantulan sinar-X. Selanjutnya, detektor merekam dan memproses sinyal sinar-X dan mengolahnya dalam bentuk grafik.

Skema difraktometer sinar-X disajikan dalam gambar berikut.
 












Skema dasar dari difraktometer sinar-X terdiri dari sebuah sumber radiasi monokromatik dan detektor sinar-X yang diletakkan pada keliling lingkaran. Detektor sinar-X dapat bergerak sepanjang keliling lingkaran yang memiliki tanda sebagai ukuran besar sudut. Pusat lingkarannya berupa tempat spesimen (chamber). Sebuah celah pemencar (divergent slits) ditempatkan di antara sumber sinar-X dengan spesimen, dan sebuah celah pengumpul (receiving slits) ditempatkan spesimen dan detektor. Celah pengumpul ini dapat membatasi radiasi yang terhambur (bukan yang terdifraksi), mengurangi derau latar (background noise) dan membuat arah radiasi menjadi sejajar. Detektor dan tempat spesimen secara mekanis dibuat berpasangan dengan goniometer. Goniometer merupakan alat untuk mengukur sudut atau membuat suatu obyek (dalam hal ini adalah detektor) berotasi dalam posisi sudut yang tepat. Dalam set XRD, rotasi detektor melalui sudut sebesar 2θ terjadi bersamaan dengan rotasi spesimen sebesar θ, dengan perbandingan tetap 2:1.
Sinar-X dihasilkan di suatu tabung sinar katode dengan pemanasan kawat pijar untuk menghasilkan elektron-elektron, kemudian elektron-elektron tersebut dipercepat terhadap suatu target dengan memberikan suatu voltase, dan menembak target dengan elektron. Ketika elektron-elektron mempunyai energi yang cukup untuk mengeluarkan elektron-elektron dalam target, karakteristik spektrum sinar-X dihasilkan. Alat untuk menghasilkan sinar-X harus terdiri dari beberapa komponen utama, yaitu :
a.       Sumber elektron (katoda)
b.      Tegangan tinggi untuk mempercepat elektron
c.       Logam target (anoda)
Ketiga komponen tersebut merupakan komponen utama suatu tabung sinar-X. Skema tabung sinar-X dapat dilihat pada Gambar
Spektrum sinar-X terdiri atas beberapa komponen-komponen, yang paling umum adalah Kα dan Kβ. Kα terdiri atas Kα1 dan Kα2. Kα1 mempunyai panjang gelombang sedikit lebih pendek dan dua kali lebih intensitas dari Kα2. Panjang gelombang yang spesifik merupakan karakteristik dari bahan target (Cu, Fe, Mo, Cr). Disaring, oleh kertas perak atau kristal monochrometers, yang akan menghasilkan sinar-X monokromatik yang diperlukan untuk difraksi. Tembaga adalah bahan sasaran yang paling umum untuk diffraction kristal tunggal, dengan radiasi Cu Kα =05418Å. Sinar-X ini bersifat collimated dan mengarahkan ke sampel. Saat sampel dan detektor diputar, intensitas Sinar X pantul itu direkam. Ketika geometri dari peristiwa sinar-X tersebut memenuhi persamaan Bragg, interferens konstruktif terjadi dan suatu puncak di dalam intensitas terjadi. Detektor akan merekam dan memproses isyarat penyinaran ini dan mengkonversi isyarat itu menjadi suatu arus yang akan dikeluarkan pada printer atau layar komputer.
B.     Prinsip Kerja XRD
Seberkas sinar-X dengan panjang gelombang λ (cahaya monokromatik) jatuh pada struktur geometris atom atau molekul dari sebuah kristal pada sudut datang θ. Jika beda lintasan antara sinar yang dipantulkan dari bidang yang berturut-turut sebanding dengan n panjang gelombang, maka sinar tersebut mengalami difraksi. Peristiwa difraksi mungkin terjadi karena jarak antaratom dalam kristal dan molekul berkisar antara 0,15 hingga 0,4 nm, yang bersesuaian dengan spektrum gelombang elektromagnet pada kisaran panjang gelombang sinar-X dengan energi foton antara 3 hingga 8 keV. Sesuai dengan Hukum Bragg, dengan memvariasi sudut θ diperoleh lebar antar celah yang berbeda dalam bahan polikristalin. Kemudian, posisi sudut dan intensitas puncak hasil difraksi digrafikkan dan diperoleh pola yang merupakan karakteristik sampel. Setiap kristal memiliki pola XRD yang berbeda satu sama lain yang bergantung pada struktur internal bahan. Pola XRD ini merupakan karateristik dari masing-masing bahan sehingga disebut sebagai ‘fingerprint’ dari suatu mineral atau bahan kristal.
Kelebihan penggunaan sinar-X dalam karakterisasi material adalah kemampuan penetrasinya, sebab sinar-X memiliki energi sangat tinggi akibat panjang gelombangnya pendek. Sementara itu, kekurangannya adalah untuk obyek berupa kristal tunggal sangat sulit mendapatkan senyawa dalam bentuk kristalnya. Sedangkan untuk objek berupa bubuk (powder) sulit untuk menentukan strukturnya.

1 komentar:

  1. saya mohon di kasih tau nama alat untuk pengukuran XRD, EIS, Charge Discharge, CV, SEM terima kasih

    BalasHapus